maliput
AntiderivativeFunction< T > Class Template Reference

Detailed Description

template<typename T>
class maliput::drake::systems::AntiderivativeFunction< T >

A thin wrapper of the ScalarInitialValueProblem class that, in concert with Drake's ODE initial value problem solvers ("integrators"), provide the ability to perform quadrature on an arbitrary scalar integrable function.

That is, it allows the evaluation of an antiderivative function F(u; 𝐀), such that F(u; 𝐀) = ∫α΅₯ᡘ f(x; 𝐀) dx where f : ℝ β†’ ℝ , u ∈ ℝ, v ∈ ℝ, 𝐀 ∈ ℝᡐ. The parameter vector 𝐀 allows for generic function definitions, which can later be evaluated for any instance of said vector. Also, note that 𝐀 can be understood as an m-tuple or as an element of ℝᡐ, the vector space, depending on how it is used by the integrable function.

See ScalarInitialValueProblem class documentation for information on caching support and dense output usage for improved efficiency in antiderivative function F evaluation.

For further insight into its use, consider the following examples.

  • Solving the elliptic integral of the first kind E(Ο†; ΞΎ) = ∫ᡠ √(1 - ΞΎΒ² sinΒ² ΞΈ)⁻¹ dΞΈ becomes straightforward by defining f(x; 𝐀) β‰œ √(1 - kβ‚€Β² sinΒ² x)⁻¹ with 𝐀 β‰œ [ΞΎ] and evaluating F(u; 𝐀) at u = Ο†.
  • As the bearings in a rotating machine age over time, these are more likely to fail. Let Ξ³ be a random variable describing the time to first bearing failure, described by a family of probability density functions gᡧ(y; l) parameterized by bearing load l. In this context, the probability of a bearing under load to fail during the first N months becomes P(0 < Ξ³ ≀ N mo.; l) = Gᡧ(N mo.; l) - Gᡧ(0; l), where Gᡧ(y; l) is the family of cumulative density functions, parameterized by bearing load l, and G'ᡧ(y; l) = gᡧ(y; l). Therefore, defining f(x; 𝐀) β‰œ gᡧ(x; kβ‚€) with 𝐀 β‰œ [l] and evaluating F(u; 𝐀) at u = N yields the result.

@tparam_nonsymbolic_scalar

#include <src/maliput/drake/systems/analysis/antiderivative_function.h>

Classes

struct  IntegrableFunctionContext
 The set of values that, along with the function being integrated, partially specify the definite integral i.e. More...
 

Public Types

using IntegrableFunction = std::function< T(const T &x, const VectorX< T > &k)>
 Scalar integrable function f(x; 𝐀) type. More...
 

Public Member Functions

 DRAKE_NO_COPY_NO_MOVE_NO_ASSIGN (AntiderivativeFunction)
 
 AntiderivativeFunction (const IntegrableFunction &integrable_function, const IntegrableFunctionContext &default_values={})
 Constructs the antiderivative function of the given integrable_function, using default_values.v as lower integration bound if given (0 if not) and parameterized with default_values.k if given (an empty vector if not) by default. More...
 
Evaluate (const T &u, const IntegrableFunctionContext &values={}) const
 Evaluates the definite integral F(u; 𝐀) = ∫α΅₯ᡘ f(x; 𝐀) dx from the lower integration bound v (see definition in class documentation) to u using the parameter vector 𝐀 (see definition in class documentation) if present in values, falling back to the ones given on construction if missing. More...
 
std::unique_ptr< ScalarDenseOutput< T > > MakeDenseEvalFunction (const T &w, const IntegrableFunctionContext &values={}) const
 Evaluates and yields an approximation of the definite integral F(u; 𝐀) = ∫α΅₯ᡘ f(x; 𝐀) dx for v ≀ u ≀ w, i.e. More...
 
template<typename Integrator , typename... Args>
Integrator * reset_integrator (Args &&... args)
 Resets the internal integrator instance. More...
 
const IntegratorBase< T > & get_integrator () const
 Gets a reference to the internal integrator instance. More...
 
IntegratorBase< T > & get_mutable_integrator ()
 Gets a mutable reference to the internal integrator instance. More...
 

Member Typedef Documentation

◆ IntegrableFunction

using IntegrableFunction = std::function<T(const T& x, const VectorX<T>& k)>

Scalar integrable function f(x; 𝐀) type.

Parameters
xThe variable of integration x ∈ ℝ .
kThe parameter vector 𝐀 ∈ ℝᡐ.
Returns
The function value f(x; k).

Constructor & Destructor Documentation

◆ AntiderivativeFunction()

AntiderivativeFunction ( const IntegrableFunction integrable_function,
const IntegrableFunctionContext default_values = {} 
)

Constructs the antiderivative function of the given integrable_function, using default_values.v as lower integration bound if given (0 if not) and parameterized with default_values.k if given (an empty vector if not) by default.

Parameters
integrable_functionThe function f(x; 𝐀) to be integrated.
default_valuesThe values specified by default for this function, i.e. default lower integration bound v ∈ ℝ and default parameter vector 𝐀 ∈ ℝᡐ.

Member Function Documentation

◆ DRAKE_NO_COPY_NO_MOVE_NO_ASSIGN()

DRAKE_NO_COPY_NO_MOVE_NO_ASSIGN ( AntiderivativeFunction< T >  )

◆ Evaluate()

T Evaluate ( const T &  u,
const IntegrableFunctionContext values = {} 
) const

Evaluates the definite integral F(u; 𝐀) = ∫α΅₯ᡘ f(x; 𝐀) dx from the lower integration bound v (see definition in class documentation) to u using the parameter vector 𝐀 (see definition in class documentation) if present in values, falling back to the ones given on construction if missing.

Parameters
uThe upper integration bound.
valuesThe specified values for the integration.
Returns
The value of the definite integral.
Precondition
The given upper integration bound u must be larger than or equal to the lower integration bound v.
If given, the dimension of the parameter vector values.k must match that of the parameter vector 𝐀 in the default specified values given on construction.
Exceptions
std::exceptionif any of the preconditions is not met.

◆ get_integrator()

const IntegratorBase<T>& get_integrator ( ) const

Gets a reference to the internal integrator instance.

◆ get_mutable_integrator()

IntegratorBase<T>& get_mutable_integrator ( )

Gets a mutable reference to the internal integrator instance.

◆ MakeDenseEvalFunction()

std::unique_ptr<ScalarDenseOutput<T> > MakeDenseEvalFunction ( const T &  w,
const IntegrableFunctionContext values = {} 
) const

Evaluates and yields an approximation of the definite integral F(u; 𝐀) = ∫α΅₯ᡘ f(x; 𝐀) dx for v ≀ u ≀ w, i.e.

the closed interval that goes from the lower integration bound v (see definition in class documentation) to the uppermost integration bound w, using the parameter vector 𝐀 (see definition in class documentation) if present in values, falling back to the ones given on construction if missing.

To this end, the wrapped IntegratorBase instance solves the integral from v to w (i.e. advances the state x of its differential form x'(t) = f(x; 𝐀) from v to w), creating a scalar dense output over that [v, w] interval along the way.

Parameters
wThe uppermost integration bound. Usually, v < w as an empty dense output would result if v = w.
valuesThe specified values for the integration.
Returns
A dense approximation to F(u; 𝐀) (that is, a function), defined for v ≀ u ≀ w.
Note
The larger the given w value is, the larger the approximated interval will be. See documentation of the specific dense output technique in use for reference on performance impact as this interval grows.
Precondition
The given uppermost integration bound w must be larger than or equal to the lower integration bound v.
If given, the dimension of the parameter vector values.k must match that of the parameter vector 𝐀 in the default specified values given on construction.
Exceptions
std::exceptionif any of the preconditions is not met.

◆ reset_integrator()

Integrator* reset_integrator ( Args &&...  args)

Resets the internal integrator instance.

A usage example is shown below.

antiderivative_f.reset_integrator<RungeKutta2Integrator<T>>(max_step);
Parameters
argsThe integrator type-specific arguments.
Returns
The new integrator instance.
Template Parameters
IntegratorThe integrator type, which must be an IntegratorBase subclass.
ArgsThe integrator specific argument types.
Warning
This operation invalidates pointers returned by AntiderivativeFunction::get_integrator() and AntiderivativeFunction::get_mutable_integrator().

The documentation for this class was generated from the following file: